2x*x+33x+11=89x+1

Simple and best practice solution for 2x*x+33x+11=89x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x*x+33x+11=89x+1 equation:



2x*x+33x+11=89x+1
We move all terms to the left:
2x*x+33x+11-(89x+1)=0
We add all the numbers together, and all the variables
33x+2x*x-(89x+1)+11=0
Wy multiply elements
2x^2+33x-(89x+1)+11=0
We get rid of parentheses
2x^2+33x-89x-1+11=0
We add all the numbers together, and all the variables
2x^2-56x+10=0
a = 2; b = -56; c = +10;
Δ = b2-4ac
Δ = -562-4·2·10
Δ = 3056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3056}=\sqrt{16*191}=\sqrt{16}*\sqrt{191}=4\sqrt{191}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-4\sqrt{191}}{2*2}=\frac{56-4\sqrt{191}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+4\sqrt{191}}{2*2}=\frac{56+4\sqrt{191}}{4} $

See similar equations:

| 5(x-1)+(2x+6)+6=0 | | 208-10x=78 | | 10x=-35,5555555 | | 8k-5-2k+1=0 | | 13x+5.5+13x+5.5+x+x=360 | | -25=k/32 | | -6(-6+2r)-3(r+3)=-78 | | 4x^2+22x+100=0 | | 9.47-13.2h=-5.3h+11.84 | | 420=×(x+2) | | (x)=x2-14x+44 | | =x2-14x+44 | | 26-3x=5(1-2x) | | 3x^2+99=0 | | 20=0.5(u+0)10 | | 7/8=-3/4t | | 16-2t=t+9-4t | | -14x4(2x-5)=9 | | x/7=4/9 | | 6x=1x+3.5 | | X-2(3x-9=7 | | n-5=7+3n-6-3n | | 6x=1+3.5 | | X-3x÷7=11 | | 4x^2-24x-5=0 | | -6-6v-4v=-3v-8v | | 4x^2-24^x-5=0 | | 1/2x÷2/5x-2=-1 | | n+8=-7+4n | | -3x=6x+2 | | 16=-1/3x | | 17x^2-3=0 |

Equations solver categories