2x*x+4x-1=7x*x-7x+1

Simple and best practice solution for 2x*x+4x-1=7x*x-7x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x*x+4x-1=7x*x-7x+1 equation:



2x*x+4x-1=7x*x-7x+1
We move all terms to the left:
2x*x+4x-1-(7x*x-7x+1)=0
We add all the numbers together, and all the variables
2x*x+4x-(-7x+7x*x+1)-1=0
We add all the numbers together, and all the variables
4x+2x*x-(-7x+7x*x+1)-1=0
Wy multiply elements
2x^2+4x-(-7x+7x*x+1)-1=0
We get rid of parentheses
2x^2+4x+7x-7x*x-1-1=0
We add all the numbers together, and all the variables
2x^2+11x-7x*x-2=0
Wy multiply elements
2x^2-7x^2+11x-2=0
We add all the numbers together, and all the variables
-5x^2+11x-2=0
a = -5; b = 11; c = -2;
Δ = b2-4ac
Δ = 112-4·(-5)·(-2)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-9}{2*-5}=\frac{-20}{-10} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+9}{2*-5}=\frac{-2}{-10} =1/5 $

See similar equations:

| 5d−10=6d | | 2/4x=1/5 | | -13=5*x-8 | | 4j−3=5j | | 8v=-8+10v | | 3v=8 | | 3(x-9)(x-9)=81 | | 74x=2 | | 63x-36=27 | | 4.16+0.75x=5.66+0.5x | | 154=2x | | 25^2-10x+1=0 | | 6x—2+20=180 | | 16x-32=96 | | 6/7=20/x | | x/18=5/12 | | (6x—2°)+20=180 | | (6x—2°)+20=189 | | 2x-(-1)=5.4 | | 55x-11=6(2x-10) | | 1−3n=-5 | | 4x-4=-1-1 | | x=4x+9/4-x | | f/4=+6=10 | | X^2+14x-175=6 | | X^2+14x-175=0 | | 1−3x=4 | | 1−3g=4 | | X-(2x+1)=-(8-(3x+3) | | 6/z-3=8-5 | | 1+9=3h-7 | | -5(x-10)=40 |

Equations solver categories