If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x*x=64
We move all terms to the left:
2x*x-(64)=0
Wy multiply elements
2x^2-64=0
a = 2; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·2·(-64)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*2}=\frac{0-16\sqrt{2}}{4} =-\frac{16\sqrt{2}}{4} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*2}=\frac{0+16\sqrt{2}}{4} =\frac{16\sqrt{2}}{4} =4\sqrt{2} $
| v2+19v=90=0 | | x-1÷3=1÷6 | | 12x-14=-34 | | -6.5+5=-11+1.5x | | 6(7-k)=36 | | -6.5x+5=-11+1.5 | | 9(10-d)=36 | | 25=2x-7 | | 8r-4+4r=44 | | (-8x+32)/(x-4)=-8 | | 30y+3=39 | | n=-1n2 | | 7x+9=1/2(8x-12) | | 3z+2-3=5 | | -1x^2+4x+(x-2)^2=-4 | | (1+d)*(1+d)=2 | | 7x+23=107 | | 4x-19=29 | | (x-2)^2-4x=x^2-4 | | 2x-10+4x-20=180 | | 12x+33=129 | | X+1/2+x/3=x/2+1/6 | | (3x-1)(2x-3)=-3x(4-2x) | | 9x-19=90 | | 11x+10=54 | | X/3+10=x+20/3 | | 5v^2+8v-4=0 | | 5(4w+1)/2=-6 | | 4x-3=—2x+8 | | 8(3w+8)/5=2 | | a/3-6=11 | | 3(3t-5=12 |