2x+(17422/x)=395

Simple and best practice solution for 2x+(17422/x)=395 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+(17422/x)=395 equation:



2x+(17422/x)=395
We move all terms to the left:
2x+(17422/x)-(395)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x+(+17422/x)-395=0
We get rid of parentheses
2x+17422/x-395=0
We multiply all the terms by the denominator
2x*x-395*x+17422=0
We add all the numbers together, and all the variables
-395x+2x*x+17422=0
Wy multiply elements
2x^2-395x+17422=0
a = 2; b = -395; c = +17422;
Δ = b2-4ac
Δ = -3952-4·2·17422
Δ = 16649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-395)-\sqrt{16649}}{2*2}=\frac{395-\sqrt{16649}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-395)+\sqrt{16649}}{2*2}=\frac{395+\sqrt{16649}}{4} $

See similar equations:

| |2x+4|=|5x-2| | | 5(2x-1)=3(2x+2) | | 3(2x+2)=2(2x+5) | | 6x-4=3x+76x-3=7-4=3x=3 | | 7n=5=302 | | 3n2=300 | | 3n2=302 | | 3n2+2=302 | | -7+6x=x-2 | | 9x+-20=2(x+8) | | 1002-6n=302 | | 4x/3=5+x | | 8+4x=8x | | 4n-2=302 | | 35(x/100)+37((100-x)/100)=35.5 | | 8=64n | | 6-y=-2,3 | | 27=2^3x-1 | | (x^2-19x+72)^2=0 | | (3^n+1)+((3^n+3)-(3^n+1))=0 | | (x^2)=1250 | | 9x²+1=6x | | (x-3)(x+2)-3x²+12x=0 | | (1/X)+(1/y)=1/10 | | (3x+1)/4=(5x-2)/5 | | 3x+1/4=5x-2/5 | | 0.4x+0.25=(81-x) | | 1/5=x-2/135 | | 8-(x-4)-2x+3(5-x)=0 | | x4+32=3x8 | | 5x/3x-4-5x/3x+4=2 | | x+4+x+2+x+5=x+3+x+1 |

Equations solver categories