2x+(2/3*2x)=290

Simple and best practice solution for 2x+(2/3*2x)=290 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+(2/3*2x)=290 equation:



2x+(2/3*2x)=290
We move all terms to the left:
2x+(2/3*2x)-(290)=0
Domain of the equation: 3*2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x+(+2/3*2x)-290=0
We get rid of parentheses
2x+2/3*2x-290=0
We multiply all the terms by the denominator
2x*3*2x-290*3*2x+2=0
Wy multiply elements
12x^2*2-1740x*2+2=0
Wy multiply elements
24x^2-3480x+2=0
a = 24; b = -3480; c = +2;
Δ = b2-4ac
Δ = -34802-4·24·2
Δ = 12110208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12110208}=\sqrt{64*189222}=\sqrt{64}*\sqrt{189222}=8\sqrt{189222}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3480)-8\sqrt{189222}}{2*24}=\frac{3480-8\sqrt{189222}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3480)+8\sqrt{189222}}{2*24}=\frac{3480+8\sqrt{189222}}{48} $

See similar equations:

| 290=2x+2x(2/3) | | 2+3=5x10 | | 360=120-85-53-x | | -3(x-9)=2x | | 5n+40=40 | | 2/5=m/70 | | 290=2x+2/3 | | 10000x1/1.01^2=8.264 | | 3t-7=5t6t | | 2^t=20+10t | | 3t-7=5t6t | | 19(x-2)=4(x+13) | | 2^t=20+10t | | 10000x1/1.01^2=8.264 | | 10000x1/1.01^2=8.264 | | (x)(2x+1)(x-2)(2x-3)=63 | | -.02x^2=1.12x=12 | | -3(2x+5)-8x+7=2(6-6x) | | -.02x^2=1.12x=12 | | 2b/3+4=5b-9/7 | | 8x^2+90+250=0 | | -3(2x+5)-8x+7=2(6-6x9 | | 8x^2+90+250=0 | | 8x^2+90+250=0 | | 4x-2=3x+3-6 | | -3/4x=3/4 | | -3(2x+5)-8x+7=2(6-6x9 | | 2b/3+4=5b-9/7 | | 4x-2=3x+3-6 | | -2=3x+6-4x | | -2=3x+6-4x | | 2-x=8+5x |

Equations solver categories