2x+(2/7x+1)+4x-(3x+2)=11+2

Simple and best practice solution for 2x+(2/7x+1)+4x-(3x+2)=11+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+(2/7x+1)+4x-(3x+2)=11+2 equation:



2x+(2/7x+1)+4x-(3x+2)=11+2
We move all terms to the left:
2x+(2/7x+1)+4x-(3x+2)-(11+2)=0
Domain of the equation: 7x+1)!=0
x∈R
We add all the numbers together, and all the variables
2x+(2/7x+1)+4x-(3x+2)-13=0
We add all the numbers together, and all the variables
6x+(2/7x+1)-(3x+2)-13=0
We get rid of parentheses
6x+2/7x-3x+1-2-13=0
We multiply all the terms by the denominator
6x*7x-3x*7x+1*7x-2*7x-13*7x+2=0
Wy multiply elements
42x^2-21x^2+7x-14x-91x+2=0
We add all the numbers together, and all the variables
21x^2-98x+2=0
a = 21; b = -98; c = +2;
Δ = b2-4ac
Δ = -982-4·21·2
Δ = 9436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9436}=\sqrt{4*2359}=\sqrt{4}*\sqrt{2359}=2\sqrt{2359}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-98)-2\sqrt{2359}}{2*21}=\frac{98-2\sqrt{2359}}{42} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-98)+2\sqrt{2359}}{2*21}=\frac{98+2\sqrt{2359}}{42} $

See similar equations:

| 10t-5t-2t=6 | | -50=-10(4)+b | | 2x+x+10+x+10=180 | | 2n+3n-4-3=8 | | j+8/2=j | | 3r^2+45r+168=0 | | 8h-9h+6=-4 | | 3(2x5-5)-2=1 | | 3x^2+1=61 | | |4b-8|+5=29 | | 16+3y=34 | | 3.6x=72 | | 7x-47+8=12 | | -10=30x+20 | | 52+78+x=180 | | 812=-28s | | 37+90+b=180 | | 8/(5+z)=4 | | 9+3x=-21-3x | | -8+x=4.6 | | 180+10x=550 | | 44+x=409 | | 121=3.14r^2 | | 480+5x=180 | | 22+124+b=180 | | 23(2x-3)=4x | | 200=25x+100 | | 13+3b=42 | | 10(x+3)=175 | | 40=5(3x-12) | | 15-10=5x+10 | | 2x+16X=26 |

Equations solver categories