2x+(4/3)x+20=180

Simple and best practice solution for 2x+(4/3)x+20=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+(4/3)x+20=180 equation:



2x+(4/3)x+20=180
We move all terms to the left:
2x+(4/3)x+20-(180)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x+(+4/3)x+20-180=0
We add all the numbers together, and all the variables
2x+(+4/3)x-160=0
We multiply parentheses
4x^2+2x-160=0
a = 4; b = 2; c = -160;
Δ = b2-4ac
Δ = 22-4·4·(-160)
Δ = 2564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2564}=\sqrt{4*641}=\sqrt{4}*\sqrt{641}=2\sqrt{641}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{641}}{2*4}=\frac{-2-2\sqrt{641}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{641}}{2*4}=\frac{-2+2\sqrt{641}}{8} $

See similar equations:

| 2-7a=12-5a | | 13+x/4=18 | | 27+x/7=58 | | 3x-15+5x=-7 | | 8x-30=21 | | 23x+3=17x+7=90 | | f(11)=2 | | 6x+4=-x-80 | | 1.9x=1.2x+43.68 | | 3x-6=1/2x+30 | | 4.8x-4=-0.2x+5.8 | | x^2-x-45=45 | | .8p2-4p=0 | | 15=8-3(n-1) | | 7=-2x-7 | | 33-6r=15r-27 | | 9x^2+6x-27=0 | | -x+6+2x=-4x-4 | | 5=12-x/4 | | x-42=2x-42 | | Y=1569x+5986 | | 7+9y=16-9y | | 3+3x-6x=6-3x-3 | | 2/5x+11=4/5x-17 | | 2x+x-0.4=113.4 | | 2x-1=3/4x=9 | | 3/4k*9=6 | | 2x+4-0.4=113.4 | | -7=p/15-1 | | 23x+3=17x+7 | | 7x-3x=-6(x+10)+-15-15x | | 14+-3=4x |

Equations solver categories