If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+(4/6x)-1.365x=8x
We move all terms to the left:
2x+(4/6x)-1.365x-(8x)=0
Domain of the equation: 6x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
2x+(+4/6x)-1.365x-8x=0
We add all the numbers together, and all the variables
-7.365x+(+4/6x)=0
We get rid of parentheses
-7.365x+4/6x=0
We multiply all the terms by the denominator
-(7.365x)*6x+4=0
We add all the numbers together, and all the variables
-(+7.365x)*6x+4=0
We multiply parentheses
-42x^2+4=0
a = -42; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-42)·4
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*-42}=\frac{0-4\sqrt{42}}{-84} =-\frac{4\sqrt{42}}{-84} =-\frac{\sqrt{42}}{-21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*-42}=\frac{0+4\sqrt{42}}{-84} =\frac{4\sqrt{42}}{-84} =\frac{\sqrt{42}}{-21} $
| 10x+12=8(x-1) | | 17x-21+8x+1=180 | | -38+2k=8(6+4K)+4 | | d/4-3.3=6.7 | | 10x-5+7x+19=180 | | 19+x/2=32 | | 2d+3=17+5d | | 6x-36=48 | | 2(2x+1)=16(2x-5) | | 2x-3=6+× | | x÷16=-8 | | -3t6=12 | | 2b-15=-11 | | -4j=-24 | | 8(4-x)=7x2 | | 7g-10=70 | | -8m=112 | | 5x−2.5+6x−3=(2x−1) | | 5x−2.5+6x−3= | | 3/2=3/2x-6/5x | | 6k-8=40 | | 3x*6=18 | | 11b+25=14 | | 6x-4=-12x+8 | | 2(3-5x)=2(5x+2) | | 6x-4=-12+8 | | -22+n=44 | | 16+4x=2(−x+5)−24 | | 2(x+5)+3(x-20)=180 | | −8y+9(-5)=−5 | | m2+3=0 | | 1/2x10=-12 |