2x+(5/x)=100

Simple and best practice solution for 2x+(5/x)=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+(5/x)=100 equation:



2x+(5/x)=100
We move all terms to the left:
2x+(5/x)-(100)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x+(+5/x)-100=0
We get rid of parentheses
2x+5/x-100=0
We multiply all the terms by the denominator
2x*x-100*x+5=0
We add all the numbers together, and all the variables
-100x+2x*x+5=0
Wy multiply elements
2x^2-100x+5=0
a = 2; b = -100; c = +5;
Δ = b2-4ac
Δ = -1002-4·2·5
Δ = 9960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9960}=\sqrt{4*2490}=\sqrt{4}*\sqrt{2490}=2\sqrt{2490}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-2\sqrt{2490}}{2*2}=\frac{100-2\sqrt{2490}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+2\sqrt{2490}}{2*2}=\frac{100+2\sqrt{2490}}{4} $

See similar equations:

| 7x=45−2x | | x-4/5=-3/8 | | 18+3u=26−13u | | 7/8*n=-3/4 | | x-4/5=-3/4 | | x^2+3x-2x-6=6 | | (2x)^2+(3x)^2=117 | | (x^2)+(600x)=0 | | 22,8-x=25,3 | | 5x-6=3(x+7)= | | 3x-7=x+9x= | | 2p=74 | | n-42=41 | | n−42=41 | | 3x−9=−7x−4 | | 8(7)=k | | 71=p+35 | | 3x2+x=0 | | m=6(6) | | k-49=1 | | a^2-a-a=0 | | c=2(38) | | c+72=76 | | (3a)^2=0 | | x2/5-0,2x=0 | | n+15=79 | | x(6x+4)=-1 | | 20=10f | | 2h+4=5h-5 | | 9x2-60x+100=0 | | (4-3m)/2=(1-5m)/3 | | 7(w+3)=63 |

Equations solver categories