2x+1+8/9x+10+3x+10=180

Simple and best practice solution for 2x+1+8/9x+10+3x+10=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+1+8/9x+10+3x+10=180 equation:



2x+1+8/9x+10+3x+10=180
We move all terms to the left:
2x+1+8/9x+10+3x+10-(180)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We add all the numbers together, and all the variables
5x+8/9x-159=0
We multiply all the terms by the denominator
5x*9x-159*9x+8=0
Wy multiply elements
45x^2-1431x+8=0
a = 45; b = -1431; c = +8;
Δ = b2-4ac
Δ = -14312-4·45·8
Δ = 2046321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2046321}=\sqrt{9*227369}=\sqrt{9}*\sqrt{227369}=3\sqrt{227369}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1431)-3\sqrt{227369}}{2*45}=\frac{1431-3\sqrt{227369}}{90} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1431)+3\sqrt{227369}}{2*45}=\frac{1431+3\sqrt{227369}}{90} $

See similar equations:

| -x=-76 | | 28+7x=200 | | -3(8x-12)+5(4x-4)= | | 5y;y=12 | | 13m-(-7m-3)= | | x-95=9(2x+3)-20 | | 2x+5=10-3 | | y/3-8=-15 | | 2x-18=130 | | 5x-2(x-4)=-4+5x+1 | | (2+x)+3=2+(x+3) | | .5(-12p-4)=-6p-2 | | (x+3)9+-8=25 | | 6+((5x-1)/3))=10 | | 10(110)+5y=180 | | 3m-m+12=22 | | -3/5m=90 | | 0.4x+0.9=0.2x+0.3 | | 8x^2=-96 | | -24=7(x-4) | | x=4x+15;x=7 | | 3/4x+9=18 | | 7+9x+75=23x-2 | | -24=7(x04) | | 6+3x-2=7x+12-2x | | 102+58+x=180 | | 4y-1+y=34+2y-4y | | 8(3x-1)=4x+13-x | | 14-3(x+4)+2=1 | | 2(x-1)-3(x-2)+4(x-3=2(x+5) | | 3x+6+x-11+x-10=180 | | x-8+x=-10 |

Equations solver categories