2x+1+x+3/2x=180

Simple and best practice solution for 2x+1+x+3/2x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+1+x+3/2x=180 equation:



2x+1+x+3/2x=180
We move all terms to the left:
2x+1+x+3/2x-(180)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
3x+3/2x-179=0
We multiply all the terms by the denominator
3x*2x-179*2x+3=0
Wy multiply elements
6x^2-358x+3=0
a = 6; b = -358; c = +3;
Δ = b2-4ac
Δ = -3582-4·6·3
Δ = 128092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128092}=\sqrt{4*32023}=\sqrt{4}*\sqrt{32023}=2\sqrt{32023}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-358)-2\sqrt{32023}}{2*6}=\frac{358-2\sqrt{32023}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-358)+2\sqrt{32023}}{2*6}=\frac{358+2\sqrt{32023}}{12} $

See similar equations:

| 3(x+2)-x+1=19 | | 2(r-4)=5{r+(-7)} | | 5.9x-4.2=7.6 | | 5/8k-4/3=-9-2/5k | | 1/3x+1/6x=26 | | 2/15-1/2(3x+2)=0 | | 8x+4=4(2x+) | | E=1/2m4.2^2 | | 2(2y-5)=3(5-2y) | | v×v+5v+4=0 | | 6v×6v+12v=0 | | 6=-2(15-x) | | 4=1/2m355^2 | | 5x-2.2=62.5 | | 4.2=1/242v^2 | | 3x+(-2)=8x2x | | 5x^2+80=40x | | x+24/9=9/x | | 4.2=1/268v^2 | | 4.2=1/2m2000^2 | | Y=x-9/4 | | 4.2=1/2m20002 | | (z+6)^(3/4)=2 | | 5x+(-6)=18 | | 6x-18=x+7-10 | | Y=x/6+1/4 | | -2/3(x-2)=1/9(x+2) | | -13y=145 | | 19=3-7y | | 1+3x=15x+28 | | 4(y+3)=-20 | | 2x+1=5×-44 |

Equations solver categories