2x+1/2x+2(1+x)=90

Simple and best practice solution for 2x+1/2x+2(1+x)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+1/2x+2(1+x)=90 equation:



2x+1/2x+2(1+x)=90
We move all terms to the left:
2x+1/2x+2(1+x)-(90)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/2x+2(x+1)-90=0
We multiply parentheses
2x+1/2x+2x+2-90=0
We multiply all the terms by the denominator
2x*2x+2x*2x+2*2x-90*2x+1=0
Wy multiply elements
4x^2+4x^2+4x-180x+1=0
We add all the numbers together, and all the variables
8x^2-176x+1=0
a = 8; b = -176; c = +1;
Δ = b2-4ac
Δ = -1762-4·8·1
Δ = 30944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{30944}=\sqrt{16*1934}=\sqrt{16}*\sqrt{1934}=4\sqrt{1934}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-176)-4\sqrt{1934}}{2*8}=\frac{176-4\sqrt{1934}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-176)+4\sqrt{1934}}{2*8}=\frac{176+4\sqrt{1934}}{16} $

See similar equations:

| (x/100)*45=7.5 | | (17b-2)-8(2b+2)=-5 | | 61=-19+10a | | w-31-29=-28 | | 3(3w+4)/4=-4 | | -5(2t+7)=55 | | 1.7=-0.7x+0.3 | | -1(2x+8)=-20 | | 4.3n-1.6=2.3n+5 | | 15y^2-45y-50=0 | | 3y^2-9y-10=0 | | 9w+17=7w=30 | | 3(6-4x)=-11x+3 | | 12.8=-3.2x | | 5y+-7=10 | | -2m+5=-25 | | 4k+20=5k+9 | | (2x+10)=(2x-30) | | 2x/4=-1 | | 3x-5(x-5)=-8+4x-15 | | 6+4d=14 | | x-43=2x-91 | | 5(x+6)+4=7x-10 | | 52=-x/5 | | 3a-49=4a-86 | | 84=4w+8 | | (3×-6)+x+30=180 | | 10/y+5+2/y=7y-5/y^2-25 | | −4x+5−3=−7 | | -9=3-y | | 3x-48x=-50 | | X•218-x+218=180 |

Equations solver categories