2x+12=(x+20)(x+8)

Simple and best practice solution for 2x+12=(x+20)(x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+12=(x+20)(x+8) equation:



2x+12=(x+20)(x+8)
We move all terms to the left:
2x+12-((x+20)(x+8))=0
We multiply parentheses ..
-((+x^2+8x+20x+160))+2x+12=0
We calculate terms in parentheses: -((+x^2+8x+20x+160)), so:
(+x^2+8x+20x+160)
We get rid of parentheses
x^2+8x+20x+160
We add all the numbers together, and all the variables
x^2+28x+160
Back to the equation:
-(x^2+28x+160)
We add all the numbers together, and all the variables
2x-(x^2+28x+160)+12=0
We get rid of parentheses
-x^2+2x-28x-160+12=0
We add all the numbers together, and all the variables
-1x^2-26x-148=0
a = -1; b = -26; c = -148;
Δ = b2-4ac
Δ = -262-4·(-1)·(-148)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{21}}{2*-1}=\frac{26-2\sqrt{21}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{21}}{2*-1}=\frac{26+2\sqrt{21}}{-2} $

See similar equations:

| f+384=934 | | 12+6x=x-9 | | 6x-10=4x+5=10(x-4) | | 4x+9+1=29 | | n=832+101 | | -x^2+x=-42 | | 427=z-236 | | t-116=95 | | 5+6x+10=18 | | 2=s4-2 | | 2x+4/3=x-2/3 | | 12/12n=-48 | | 101=t-845 | | 2=s4− 2 | | v=548-187 | | 0.1y+2.8=-0.5y-2.6 | | x/53,x=5 | | m=442-238 | | c-233=634 | | g=2g+9 | | c−233=634 | | r-82=659 | | 18/c9c=2 | | k=984-221 | | n-10=790 | | w+27=79 | | 4b+5b-b=  | | x/x/10=2/5 | | n-502=144 | | 852=v-114 | | -13=b+7 | | -17-2g=3-g |

Equations solver categories