2x+1=x+1/x-5

Simple and best practice solution for 2x+1=x+1/x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+1=x+1/x-5 equation:



2x+1=x+1/x-5
We move all terms to the left:
2x+1-(x+1/x-5)=0
Domain of the equation: x-5)!=0
x∈R
We get rid of parentheses
2x-x-1/x+5+1=0
We multiply all the terms by the denominator
2x*x-x*x+5*x+1*x-1=0
We add all the numbers together, and all the variables
6x+2x*x-x*x-1=0
Wy multiply elements
2x^2-1x^2+6x-1=0
We add all the numbers together, and all the variables
x^2+6x-1=0
a = 1; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·1·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{10}}{2*1}=\frac{-6-2\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{10}}{2*1}=\frac{-6+2\sqrt{10}}{2} $

See similar equations:

| 4j-5=21 | | 4(2–4x)–3x=6 | | a+7=-14-6a | | 7x+9+9x+7=180 | | -3(d-2)=7(9) | | 6x+7=4×+5 | | 9x²+12x+0=0 | | 1-6x=-8-7x | | 28=-(9x+8) | | 2x+6=-4x-3 | | 12w+10=10 | | -18=2(3y-3) | | 5x=-7x-+6 | | 3+4g+8=1(g=-3;g=-1;g=2 | | 13x+4=12x+1 | | 1x-0.3=-1/7 | | 16x+2-5=127 | | 3-(x+4)=x-9 | | 12x5/6+9=1 | | 160+40x=990 | | 12x1/12+9=1 | | 14x+28=64 | | -16+8x=2x+16+4x | | 3/5x+1=2/5-3x=2 | | 12x-2/3+9=1 | | 7x=12=3+6x | | 3y-30+y+20=180 | | x+10+4x-15=90 | | -6x(x+7=-12 | | 420/600=x/100 | | -3x-5=6(-1/2x+1 | | 12x-8+9=1 |

Equations solver categories