2x+25=11/5x=20

Simple and best practice solution for 2x+25=11/5x=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+25=11/5x=20 equation:



2x+25=11/5x=20
We move all terms to the left:
2x+25-(11/5x)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x-(+11/5x)+25=0
We get rid of parentheses
2x-11/5x+25=0
We multiply all the terms by the denominator
2x*5x+25*5x-11=0
Wy multiply elements
10x^2+125x-11=0
a = 10; b = 125; c = -11;
Δ = b2-4ac
Δ = 1252-4·10·(-11)
Δ = 16065
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16065}=\sqrt{9*1785}=\sqrt{9}*\sqrt{1785}=3\sqrt{1785}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(125)-3\sqrt{1785}}{2*10}=\frac{-125-3\sqrt{1785}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(125)+3\sqrt{1785}}{2*10}=\frac{-125+3\sqrt{1785}}{20} $

See similar equations:

| 36=10m-4 | | 4x=2(x-7) | | 36=10m=4 | | 8-w=2w-2 | | 2+6x=9x+8 | | 5x-8=3x=6 | | 7=7n | | x÷3-3=5 | | 21x-3(2x-3)=14+9x | | 5x-2+x=9x+10 | | -1296+(21/12y)=1371 | | -7(x-4)=-9 | | 150m-100m+38,400=40,600-150m | | -15=2d+9 | | 9t-6=21 | | 5.9x+10=2.9x+28 | | 5x^+14x+9=0 | | 7/2x+1/2=71/2+5/2 | | 7x-2=-68 | | -8=w=1 | | -6(x-16)=-3 | | 89+2x=180 | | 2r+19=17 | | 7b-(4-b)+7= | | w-18=-22 | | b=4=4 | | -8(x+6=2x-56 | | 57=23+x | | 3p^2=-9p | | 1/2n-8=-15 | | 7n+1=76 | | 2x(2x+2x+2x+2x)=124 |

Equations solver categories