If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+2=(x-2)(x+4)
We move all terms to the left:
2x+2-((x-2)(x+4))=0
We multiply parentheses ..
-((+x^2+4x-2x-8))+2x+2=0
We calculate terms in parentheses: -((+x^2+4x-2x-8)), so:We add all the numbers together, and all the variables
(+x^2+4x-2x-8)
We get rid of parentheses
x^2+4x-2x-8
We add all the numbers together, and all the variables
x^2+2x-8
Back to the equation:
-(x^2+2x-8)
2x-(x^2+2x-8)+2=0
We get rid of parentheses
-x^2+2x-2x+8+2=0
We add all the numbers together, and all the variables
-1x^2+10=0
a = -1; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-1)·10
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-1}=\frac{0-2\sqrt{10}}{-2} =-\frac{2\sqrt{10}}{-2} =-\frac{\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-1}=\frac{0+2\sqrt{10}}{-2} =\frac{2\sqrt{10}}{-2} =\frac{\sqrt{10}}{-1} $
| 10n+5=4n+77 | | 1.28x=1.20 | | 780=2x^2+22x | | -11.4-3.2=x | | 9x+28=3x+3 | | 6(6x+3)=9(4x+2) | | 2=9-7b | | 35^2+35^2=c^2 | | (18-(-4))/2+(-6)(3)=x | | 5=5x+9-3x | | 4/5k+7/10=13/15k-3/6 | | -6(6n-3)=306 | | -6+8=2+10-7z | | 9x-13=35+x | | 3+1/3x=-2x+31 | | 180=(6x+4)+44 | | -4=m÷-3 | | 12a+37=-3a-13 | | -4-5n=8+3n-5n | | -5x-4/5=2x+136/5 | | −12x+2x−15=−15x+28 | | 13-2x+4x=1+4x | | 7-6x=2x+29/3 | | g/3-8=12 | | 200=20s+18 | | 8-6m=448 | | -11=-6x+61 | | 5x+2+7x-1=85 | | 9,3-x=5 | | 3(7a+3)-5a+55=12(a+7) | | 3x-3=-3+9 | | 3x-6÷8=-2 |