If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+2=3x-6/52x+2=3x-6/5
We move all terms to the left:
2x+2-(3x-6/52x+2)=0
Domain of the equation: 52x+2)!=0We get rid of parentheses
x∈R
2x-3x+6/52x-2+2=0
We multiply all the terms by the denominator
2x*52x-3x*52x-2*52x+2*52x+6=0
Wy multiply elements
104x^2-156x^2-104x+104x+6=0
We add all the numbers together, and all the variables
-52x^2+6=0
a = -52; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-52)·6
Δ = 1248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1248}=\sqrt{16*78}=\sqrt{16}*\sqrt{78}=4\sqrt{78}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{78}}{2*-52}=\frac{0-4\sqrt{78}}{-104} =-\frac{4\sqrt{78}}{-104} =-\frac{\sqrt{78}}{-26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{78}}{2*-52}=\frac{0+4\sqrt{78}}{-104} =\frac{4\sqrt{78}}{-104} =\frac{\sqrt{78}}{-26} $
| 3a+3/7=2a+2/7 | | 3a+18/5=2a+8/5 | | 3b-6/5=2b-2/3 | | 3z+9/7=2z+5/3 | | 4x^2+20x+37=0 | | 3a-3/7=2a+10/7 | | 3y-1=2y-10/3 | | 3x-7=2x-1/2 | | y+15=55 | | 2a+12/7=3a-6 | | 3b-12/5=2b-1 | | 3z-2=2z-8/7 | | 2y+14/5=3y-2 | | 2y+2=3y-21/4 | | 3x-3=2x-4/3 | | 3x-3=2x+2/7 | | 2y+2=3y+7/2 | | 3x-3/2=2x+4 | | 3x-1=2x+10/7 | | 3a+4=2a+7/3 | | 2x+2=3x+12/7 | | 2x+6/5=3x-9/5 | | 2a-3=3a-9/5 | | 3z-12/7=2z+1 | | 3y-5/2=2y+8/3 | | 1/2t-(6+6t)=-2/7 | | 0.2m–0.5=0.1m+0.7 | | 4(-x+8)=25 | | 3z+9/7=2z+2 | | 2z+1=3z-18/5 | | 3a-1=2a+5/3 | | 2y-2=3y-15/4 |