If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+4=(2-3x)(-2x)
We move all terms to the left:
2x+4-((2-3x)(-2x))=0
We add all the numbers together, and all the variables
2x-((-3x+2)(-2x))+4=0
We multiply parentheses ..
-((+6x^2-4x))+2x+4=0
We calculate terms in parentheses: -((+6x^2-4x)), so:We add all the numbers together, and all the variables
(+6x^2-4x)
We get rid of parentheses
6x^2-4x
Back to the equation:
-(6x^2-4x)
2x-(6x^2-4x)+4=0
We get rid of parentheses
-6x^2+2x+4x+4=0
We add all the numbers together, and all the variables
-6x^2+6x+4=0
a = -6; b = 6; c = +4;
Δ = b2-4ac
Δ = 62-4·(-6)·4
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{33}}{2*-6}=\frac{-6-2\sqrt{33}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{33}}{2*-6}=\frac{-6+2\sqrt{33}}{-12} $
| 3x−12+4x−25=180 | | .6+3t=8t−14 | | -217=-7-4c | | 5+2x=6x+6 | | (3x−12)+(4x−25)=180 | | x+8=3x-6-x+1 | | x+5+x+3=-(x+4)+(3x-2) | | (6x-2)+(3x+7)=180 | | -3v-6=12 | | 80=5(2-4x)+2x | | -8x-8x=-4(x+3)+6(7x+11) | | 13x+2+17x-2=180 | | 1−2s=4+4s+9 | | x12=31 | | -1.7-2x=7.7 | | 1−4b−7b=−10 | | 3x+7x=–20 | | 10(2p+2)-p=2(8p-8) | | 3y-2y+y=36 | | 4x^2+10=−26 | | 3+2x+26=x+20 | | 19+4x=-1 | | 3y+2-y=-4 | | -33-6x=5(3-6x) | | (5x+28)+(2x-16)=180 | | Y=-2/3(x-5)+8 | | 2(c+1)=-10 | | 7a-2=a+16 | | -2+7d-2=6d+4 | | (6x=8)+(5x+1) | | 6(3-2x)=48 | | 1/2(3-4b)-5(2b+3)=b-17 |