If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+6=(1/3)(6x+9)
We move all terms to the left:
2x+6-((1/3)(6x+9))=0
Domain of the equation: 3)(6x+9))!=0We add all the numbers together, and all the variables
x∈R
2x-((+1/3)(6x+9))+6=0
We multiply parentheses ..
-((+6x^2+1/3*9))+2x+6=0
We multiply all the terms by the denominator
-((+6x^2+1+2x*3*9))+6*3*9))=0
We calculate terms in parentheses: -((+6x^2+1+2x*3*9)), so:We add all the numbers together, and all the variables
(+6x^2+1+2x*3*9)
We get rid of parentheses
6x^2+2x*3*9+1
Wy multiply elements
6x^2+54x*9+1
Wy multiply elements
6x^2+486x+1
Back to the equation:
-(6x^2+486x+1)
-(6x^2+486x+1)=0
We get rid of parentheses
-6x^2-486x-1=0
a = -6; b = -486; c = -1;
Δ = b2-4ac
Δ = -4862-4·(-6)·(-1)
Δ = 236172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236172}=\sqrt{4*59043}=\sqrt{4}*\sqrt{59043}=2\sqrt{59043}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-486)-2\sqrt{59043}}{2*-6}=\frac{486-2\sqrt{59043}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-486)+2\sqrt{59043}}{2*-6}=\frac{486+2\sqrt{59043}}{-12} $
| -17k-19=474 | | 100/x•60=28 | | -10v=130 | | x/6=1.4 | | x-9/4=5/1 | | x+3.4=7.8 | | 100=-16t^2=128t+20 | | x-9/4=5 | | 13x+13=195 | | (19)A=1*w | | x7=-8/9 | | 4n-3=5(2-2n) | | -5n-10=2(3n-5) | | 2(x-7/3)=2/3x+2/3(-4/3x+1) | | 78-2xx=12 | | n7=9 | | 1/2(10-2y)=2 | | 7/2(x-1)+8=22 | | 2y+y+42=360 | | 3X(x+9)=12 | | 20x-9=15x+16 | | 3×(x+9)=12 | | 5/2(x+2)-3=2 | | -(-9x-4)=56 | | -18+p=-1 | | 5x-9=6x+15 | | (2x-1)-5=13 | | 6/x=-48 | | x+2x+12=-x-x-13 | | 1. 9x+1–7x–5=-20 | | 5x+6x+26=180 | | 0.15x=0.05x*40 |