If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+7)/9=4x-1)/5
We move all terms to the left:
2x+7)/9-(4x-1)/5)=0
Domain of the equation: 9-(4x!=0We calculate fractions
We move all terms containing x to the left, all other terms to the right
-(4x!=-9
x∈R
2x+()/(-20x+9)-4x/(-20x+9)+(-1)*9=0
We add all the numbers together, and all the variables
2x+()/(-20x+9)-4x/(-20x+9)-9=0
We multiply all the terms by the denominator
2x*(-20x+9)-4x-9*(-20x+9)+()=0
We add all the numbers together, and all the variables
-4x+2x*(-20x+9)-9*(-20x+9)=0
We multiply parentheses
-40x^2-4x+18x+180x-81=0
We add all the numbers together, and all the variables
-40x^2+194x-81=0
a = -40; b = 194; c = -81;
Δ = b2-4ac
Δ = 1942-4·(-40)·(-81)
Δ = 24676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24676}=\sqrt{4*6169}=\sqrt{4}*\sqrt{6169}=2\sqrt{6169}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(194)-2\sqrt{6169}}{2*-40}=\frac{-194-2\sqrt{6169}}{-80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(194)+2\sqrt{6169}}{2*-40}=\frac{-194+2\sqrt{6169}}{-80} $
| 2x+12=-5x–16 | | 3(x-1)=2(x+6)=54 | | 3+8v+5v=7v+7v | | 3.6-4x=7.4 | | 18x+20=10x-50 | | 4x+10+2x-8=44 | | 8+8k=6k | | 5n+15-7n=35 | | 3.6-4x=4 | | 42y-26=40y+82 | | -3=1/5x | | -(x–2)=x–5–3x | | 1.1x+8.1x+38=-32 | | -1800=9.8*0*m-9.8*10*m | | x+7/3=-4 | | 5k+4=k-7+7 | | 5-3x=5(7x+2)-5 | | 5k+4=k-7+7* | | 2t+3(t-4)=6-2(3t-2) | | 3(x-8)=-2x+7(6-1) | | 10n+-4=94 | | 4(w-6)=3(+1 | | -2(6x-3)=3(x+4) | | -15.9u+19.64=-8.36-18.7u | | 5(2x+5)=-21+26 | | -6b-b=-8b+2b+4 | | 6x-12+3x=5+9x-17 | | X²-2x+56=0 | | -7/16w-26=19 | | 5.8=–4.5+z | | -9/5=3x | | 6n+5=42 |