2x+x+(3/2)x+45=180

Simple and best practice solution for 2x+x+(3/2)x+45=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+x+(3/2)x+45=180 equation:



2x+x+(3/2)x+45=180
We move all terms to the left:
2x+x+(3/2)x+45-(180)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x+x+(+3/2)x+45-180=0
We add all the numbers together, and all the variables
3x+(+3/2)x-135=0
We multiply parentheses
3x^2+3x-135=0
a = 3; b = 3; c = -135;
Δ = b2-4ac
Δ = 32-4·3·(-135)
Δ = 1629
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1629}=\sqrt{9*181}=\sqrt{9}*\sqrt{181}=3\sqrt{181}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{181}}{2*3}=\frac{-3-3\sqrt{181}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{181}}{2*3}=\frac{-3+3\sqrt{181}}{6} $

See similar equations:

| X=-6x+14 | | (x+5)(-1/9)=6 | | 0=y+-16+-2y | | 2x+x+3/2x+45=180 | | 104-8x=7x+16 | | 9(x-2)=11x-18-2x | | -3x3+4=6x6-5 | | 174-6x=5x=9 | | 4x÷3=8 | | 4k=7(-4-2k)=-2(k-2) | | 5n^2+7n-24=0 | | 3(3x-4)(2x=1) | | 3x-3=3x-83 | | 6^x+3=8 | | 1=20x+5;2=24x-1 | | 3(-4)(-4)+k(3)(3)=24 | | 4x+2=x—7 | | 6x-2x-4=46 | | r2-12r+41=0 | | 5x2–80=0 | | 8+6x=8+8x=+7+3 | | 3x^2-4x-47=0 | | (2x-6)/20=39/(x+6) | | 17/8=x/11 | | 3x-16=2x-91 | | —2x—3=15 | | 85×x=100 | | 3x+x+20+2x=180 | | 5.17-2.34x=3x-1.505 | | 2(x-10)=x-5 | | 0,5x+15=3x+20 | | 2/3y+45=19 |

Equations solver categories