If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+x2=10
We move all terms to the left:
2x+x2-(10)=0
We add all the numbers together, and all the variables
x^2+2x-10=0
a = 1; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·1·(-10)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{11}}{2*1}=\frac{-2-2\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{11}}{2*1}=\frac{-2+2\sqrt{11}}{2} $
| 3·(x−2)=12 | | 6x-3=10x-15 | | 4x–6=6x | | 9y+4=2y+10 | | 42+a=20 | | 2x-0.3=1 | | 42+q=20 | | 4x*2x=448 | | 3(x+1)+3=x+20 | | Y=4x+3x=-2 | | 5x+3-2x+8=4x-2 | | 2(x+3)=2(3x+4) | | 1/4x-1/5x+1/20x=3 | | 20+a=2 | | -x=5x-8 | | 16/2x+3=4 | | x3-12x+7=0 | | x2+12x+40=0 | | Y=-4.9t^2+14.7 | | 16-y^2-y=4 | | 2x+4=9x+5 | | 2x2+7=0 | | 6;12=x;4 | | -x4+-3x3+6x2+8x=0 | | x+6-x^2=4 | | y+(49-y)=36 | | y+(y+36)=49 | | 18-5x=7x+30 | | 3-x=5x+735 | | p^2+160p-11000=0 | | 5x-2400=0 | | p^2+120p-11000=0 |