2x-(x-2)(x+5)=7(x+3)

Simple and best practice solution for 2x-(x-2)(x+5)=7(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-(x-2)(x+5)=7(x+3) equation:



2x-(x-2)(x+5)=7(x+3)
We move all terms to the left:
2x-(x-2)(x+5)-(7(x+3))=0
We multiply parentheses ..
-(+x^2+5x-2x-10)+2x-(7(x+3))=0
We calculate terms in parentheses: -(7(x+3)), so:
7(x+3)
We multiply parentheses
7x+21
Back to the equation:
-(7x+21)
We get rid of parentheses
-x^2-5x+2x+2x-7x+10-21=0
We add all the numbers together, and all the variables
-1x^2-8x-11=0
a = -1; b = -8; c = -11;
Δ = b2-4ac
Δ = -82-4·(-1)·(-11)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{5}}{2*-1}=\frac{8-2\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{5}}{2*-1}=\frac{8+2\sqrt{5}}{-2} $

See similar equations:

| 5x+-2=1x+3 | | x−16=29 | | 5-5=7y-3 | | 11x+13=9x | | 175x+75x+57900=60300-200x | | 4x+5-7=4x+3x | | 12=-4(-6s-3) | | 9+3(1-5y)=-26 | | (y-7)8=y | | (4x+20)(x-10)=180 | | -7=v-5 | | 7y-3+6y=36 | | 2-12-14=2n | | 2(-1/2)²+k(4)=0 | | 13=a3−2 | | 5(y+5)=6y | | 5+(13-5)=x | | 8(6z-3)=-26 | | 5x-(15-x)=-30-2x | | 21(s-14)=7(s+18) | | 1/3y+2.5-2/3y=1.2 | | 11=9-2x+4x | | 3y/10-5=y/5+5 | | 16-x+12=8x+44 | | 9+5x+7x=27 | | (1-3x)(1+3x)=0 | | 1/2x+5=3 | | 5x2+20x=0 | | 18-(x+6)=7x-4 | | 8(-1+3x)-3x=22+6x | | ((4)^x)-13=7 | | 15+n/2=47 |

Equations solver categories