2x-11/x-1=x-7/x+3

Simple and best practice solution for 2x-11/x-1=x-7/x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-11/x-1=x-7/x+3 equation:



2x-11/x-1=x-7/x+3
We move all terms to the left:
2x-11/x-1-(x-7/x+3)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x+3)!=0
x∈R
We get rid of parentheses
2x-11/x-x+7/x-3-1=0
We multiply all the terms by the denominator
2x*x-x*x-3*x-1*x-11+7=0
We add all the numbers together, and all the variables
-4x+2x*x-x*x-4=0
Wy multiply elements
2x^2-1x^2-4x-4=0
We add all the numbers together, and all the variables
x^2-4x-4=0
a = 1; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*1}=\frac{4-4\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*1}=\frac{4+4\sqrt{2}}{2} $

See similar equations:

| 6x^-11x=5 | | 26-x=21 | | 6x^-11=5 | | 11/8=g-425 | | 3p-6=12p+72 | | y/4+2=-6 | | -7-5(2x-3)=88 | | 25+q=1/2-3 | | b=5(1+.1)2 | | X+1/4=2x+3/4 | | -272=-8(5x-6) | | -4=k/11 | | 2x^+3x=4 | | 112=8(7-x) | | 2p-9=13 | | x+31=3+5 | | 4x-(7+7x)=17-7x | | b/5+9=284 | | 4n+667-234=13n | | 4x^+3x+2=0 | | 7x+7(6x+-5)=112 | | 0=x-6/4 | | X(x-6)=-27 | | (4x-1)^2=11 | | 7x+7(6x-5)=112 | | -5(5x-8)=-85 | | a÷5/3=12 | | 3(-4+6x)=114 | | 3y=15(y-2) | | 4x+2=150= | | -49-x=94-12x | | 4x+2=150- |

Equations solver categories