2x-1=-x2+2x+4

Simple and best practice solution for 2x-1=-x2+2x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-1=-x2+2x+4 equation:



2x-1=-x2+2x+4
We move all terms to the left:
2x-1-(-x2+2x+4)=0
We add all the numbers together, and all the variables
-(-1x^2+2x+4)+2x-1=0
We get rid of parentheses
1x^2-2x+2x-4-1=0
We add all the numbers together, and all the variables
x^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $

See similar equations:

| 2(7z-5)=18 | | -x-15=45 | | 3(2w+5)=51 | | 14-7x=1,4 | | 2x+3/5=2x/3-x | | -5+3x=49 | | X²-9x+16=0 | | (4-5x)(2+x)=-4-5x^2 | | 4b+C=A | | 3x+15=-x+11 | | 3n+4=5n×2 | | -6x-32=-42,8 | | 6x^=84 | | (3x-2)(x+1)=3x^2-5 | | C(n,4)=45 | | 7y–3=6y-7 | | (3x+1)+(2x+1)+(x+4)=46 | | 2(x+4)=6(x–2) | | 1/2+x/4=6 | | 6x+12=32x×64 | | 8x–3=9+4x | | Y=0.9^y | | 10y=0.9^y | | 5+3q=7 | | 9x=8+x | | (6x+5)°=(4x+15)° | | 0,6*(3+t)=0,2*(1-t) | | 3984*x=2301.23 | | 4x+2=3+15 | | 7x+÷=52 | | 3984-x=2301.23 | | $3984-x=$2301.23 |

Equations solver categories