2x-1x-3-3(x-4)2=-x2+17x-45

Simple and best practice solution for 2x-1x-3-3(x-4)2=-x2+17x-45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-1x-3-3(x-4)2=-x2+17x-45 equation:



2x-1x-3-3(x-4)2=-x2+17x-45
We move all terms to the left:
2x-1x-3-3(x-4)2-(-x2+17x-45)=0
We add all the numbers together, and all the variables
-(-1x^2+17x-45)+2x-1x-3(x-4)2-3=0
We add all the numbers together, and all the variables
-(-1x^2+17x-45)+x-3(x-4)2-3=0
We multiply parentheses
-(-1x^2+17x-45)+x-6x+24-3=0
We get rid of parentheses
1x^2-17x+x-6x+45+24-3=0
We add all the numbers together, and all the variables
x^2-22x+66=0
a = 1; b = -22; c = +66;
Δ = b2-4ac
Δ = -222-4·1·66
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{55}}{2*1}=\frac{22-2\sqrt{55}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{55}}{2*1}=\frac{22+2\sqrt{55}}{2} $

See similar equations:

| -2.1+x8=-14.9 | | 5t4-t;t=-3 | | 4a−4a+2a+a=15 | | s+50=96 | | y+228=858 | | 3x+4-x+5=11 | | 15+2t=2t+9+t | | b+53=68 | | 130.5+17y+5=180 | | 10=5+2c | | 4x+35=3. | | (9x+20)+(2x+20)=180 | | c+4=91 | | -3n+10=-(n-4) | | 3/4x-6+2/3x+-6=-4 | | 1/2(6x−4)=3x-2 | | X-2+9=-5+3x | | 7b-20b-14b=-11 | | 2x+x+7=-26 | | 33=5(x-3) | | 6(n+4)=n-1 | | -5+3x=9x-2 | | b—217=553 | | x+50,000=1,100 | | 3x-4=17* | | +3)4y-1/5y=380 | | r-40=26 | | 2x+16+3x+12=64 | | 9x+20+2x+20=180 | | 99*88-99*d=99*(88-78) | | 6(2x+7)=-6(2x+1 | | n=1.50n-500 |

Equations solver categories