2x-3/x+1=2-3x-1/x+1

Simple and best practice solution for 2x-3/x+1=2-3x-1/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-3/x+1=2-3x-1/x+1 equation:



2x-3/x+1=2-3x-1/x+1
We move all terms to the left:
2x-3/x+1-(2-3x-1/x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We add all the numbers together, and all the variables
2x-3/x-(-3x-1/x+3)+1=0
We get rid of parentheses
2x-3/x+3x+1/x-3+1=0
We multiply all the terms by the denominator
2x*x+3x*x-3*x+1*x-3+1=0
We add all the numbers together, and all the variables
-2x+2x*x+3x*x-2=0
Wy multiply elements
2x^2+3x^2-2x-2=0
We add all the numbers together, and all the variables
5x^2-2x-2=0
a = 5; b = -2; c = -2;
Δ = b2-4ac
Δ = -22-4·5·(-2)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{11}}{2*5}=\frac{2-2\sqrt{11}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{11}}{2*5}=\frac{2+2\sqrt{11}}{10} $

See similar equations:

| 2f-9=5f+5-3f | | 8=11-m/5 | | X+3x=8-4x | | -3(-5x+7)-3x=6(x-5)-6 | | 6x=13=5 | | 2(y+2)=-5(2y-2)+4y | | 6w-8+2(5w+5)=-2(w+7) | | 1-3a=-8 | | -4+3(5x+6)=7(2x+1)-3x | | 3=g-9 | | 4t^2+16=1+4t+6 | | 4.75=10.25+4.5n | | 22x+5+15x-10=180 | | 10y+16=3y^2 | | 8-(x+1)=5 | | |4w+8|=4 | | 10y+16=9y^2 | | 40/60=30/x | | (-11)n=121 | | 3x+3(5x+3)=74 | | 3x-6=2(3-x) | | 9m-19=3m+1m=5/3 | | 0=−16t^2+8t+80 | | -2/3x+(10)=14 | | 0=−16t2+8t+80 | | 2.676=9.9−z·2.8 | | -2/3x+10)=14 | | 36.5=66.1−2s | | 7x-4=3(x+12) | | 7x(x)=250 | | 2(u-8)-5=-3(-5u+3)-3u | | -6(3w-1)+7w=3(w+4) |

Equations solver categories