2x-3/x-3-2=12/x+3

Simple and best practice solution for 2x-3/x-3-2=12/x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-3/x-3-2=12/x+3 equation:



2x-3/x-3-2=12/x+3
We move all terms to the left:
2x-3/x-3-2-(12/x+3)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x+3)!=0
x∈R
We add all the numbers together, and all the variables
2x-3/x-(12/x+3)-5=0
We get rid of parentheses
2x-3/x-12/x-3-5=0
We multiply all the terms by the denominator
2x*x-3*x-5*x-3-12=0
We add all the numbers together, and all the variables
-8x+2x*x-15=0
Wy multiply elements
2x^2-8x-15=0
a = 2; b = -8; c = -15;
Δ = b2-4ac
Δ = -82-4·2·(-15)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{46}}{2*2}=\frac{8-2\sqrt{46}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{46}}{2*2}=\frac{8+2\sqrt{46}}{4} $

See similar equations:

| 75+x=x+115 | | 14+4x-x=16-5x | | u+(-4)=0 | | 7/9y-8=-1 | | y+6/3=12 | | n^2−11n+10=0 | | 65+11x+3=8+17x | | v-14=18 | | -30-13x=9-13(x+3) | | 4+16=-4(4x-5) | | v/2-14=18 | | x-14/2=18 | | -5(n-2)=-5n+10 | | 5(4x+9)=-47+72 | | 4/5+n/5=n | | 1/5-3+3/5n=9 | | 4.3=5.8-0.5x | | 8x+4(3x-3)=(6x+4)-4 | | 7-0.7x=7 | | 3(6x-13)=-x-1 | | 29x+80=68x+2 | | 0.15c=600 | | -5x^2+600x-18000=0 | | 14*(8^x)=7 | | 14*(8)^x=7 | | 14*((8)^x)=7 | | 14(8)^x=7 | | 400=15a | | 75+12x-8=20x-5 | | 10w=8w+12 | | X^2+3x+2=180 | | 94-x=190 |

Equations solver categories