If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x-4+x2-20=180
We move all terms to the left:
2x-4+x2-20-(180)=0
We add all the numbers together, and all the variables
x^2+2x-204=0
a = 1; b = 2; c = -204;
Δ = b2-4ac
Δ = 22-4·1·(-204)
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{205}}{2*1}=\frac{-2-2\sqrt{205}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{205}}{2*1}=\frac{-2+2\sqrt{205}}{2} $
| -2(-5x-4)+x=118 | | 5(2x+4)=8x+40 | | 49^-2x=343 | | 45d+25=C | | 3x+15+x-6+x+21=180 | | x2+2=−4 | | 9(x6)=-207 | | -3.2+y/3=10.7 | | 3x-3-8=7(1+x)+2 | | -3/4w+8+w=9 | | (x)=x2-3x | | 4z−1=15 | | -8h=-72 | | F(x)=x²+2x+3 | | 16)-2=-(n-8) | | 6-t=13 | | `12+x/4=9` | | 138.2=4(20.55-t) | | -4y+6=-2y-5 | | 138.2=4(20.55-t | | −2(4.1−0.7t)=4.4 | | 5r=-3(r+7) | | 2(1+2x)=-18 | | 200=51-u | | 2(1+2x)=-19 | | 8-(y-2)=11 | | .25x=55 | | (x)=-x^2+2x+8 | | 7=11-2y | | 6s-17=5s-11 | | 3x+15+x–6+x+21=180 | | 2u-13=17 |