If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x-5*3=7*5-(x*x-5)
We move all terms to the left:
2x-5*3-(7*5-(x*x-5))=0
We add all the numbers together, and all the variables
2x-(7*5-(x*x-5))-15=0
We calculate terms in parentheses: -(7*5-(x*x-5)), so:We get rid of parentheses
7*5-(x*x-5)
determiningTheFunctionDomain -(x*x-5)+7*5
We add all the numbers together, and all the variables
-(x*x-5)+35
We get rid of parentheses
-x*x+5+35
We add all the numbers together, and all the variables
-x*x+40
Wy multiply elements
-1x^2+40
Back to the equation:
-(-1x^2+40)
1x^2+2x-40-15=0
We add all the numbers together, and all the variables
x^2+2x-55=0
a = 1; b = 2; c = -55;
Δ = b2-4ac
Δ = 22-4·1·(-55)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{14}}{2*1}=\frac{-2-4\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{14}}{2*1}=\frac{-2+4\sqrt{14}}{2} $
| 6x+10=2(x+5) | | 2/3m-7=3 | | 3(x+6)+2(x+1=3(x-4)+(3-x)+2 | | x+4x-10=35-10 | | 14=3n=8n-3(n-4) | | 4x-60=700 | | 14=3n=8n-3 | | -17=n-2+4n | | -3(1-x)=0 | | (x-3)2-32=17 | | 8x-3=3x-18 | | 3/5x-9/10=4 | | (x-3)^2-32=17 | | 3(5+a)=(28+12a) | | -3a=18=a+26 | | 2x-x+9=6x+5-11 | | 2650-5x=150 | | 7a-15=5a=5 | | k-8=8.11 | | 20x-6x=0 | | 1/2(2x+6)=3x+13 | | x2=25/64 | | X/2=5+(x-40)/5 | | 2x-3=13x-72 | | 3x=57=-6 | | 2x+10=(3-x) | | 23=v/3+13 | | 8v-5v=27 | | 4(a+5)=60 | | 23=v/3=13 | | 4/2.2=3/x | | -18h=-17+11 |