2x-7/x+3=x+1

Simple and best practice solution for 2x-7/x+3=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-7/x+3=x+1 equation:



2x-7/x+3=x+1
We move all terms to the left:
2x-7/x+3-(x+1)=0
Domain of the equation: x!=0
x∈R
We get rid of parentheses
2x-7/x-x-1+3=0
We multiply all the terms by the denominator
2x*x-x*x-1*x+3*x-7=0
We add all the numbers together, and all the variables
2x+2x*x-x*x-7=0
Wy multiply elements
2x^2-1x^2+2x-7=0
We add all the numbers together, and all the variables
x^2+2x-7=0
a = 1; b = 2; c = -7;
Δ = b2-4ac
Δ = 22-4·1·(-7)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{2}}{2*1}=\frac{-2-4\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{2}}{2*1}=\frac{-2+4\sqrt{2}}{2} $

See similar equations:

| 30=n×30 | | –12x–11=5x+3 | | 78=9.h | | 0.71=8/b | | 5(4x–2)+4=2(8x+7) | | 9y=(5y+32) | | 10-10q=5q | | 12y^2-16y-12=0 | | 59=7j=3 | | 85=11/x | | 5/7(x-9)=11 | | (-x2-2x)=(x2-4x-3) | | 8y=(2y+24) | | x(x+2)=-(x-1)(x-3) | | 4y=(8y-16) | | 2x=(3x-3) | | 3b-8=2b+15 | | 12y/y+4y^2/y=0 | | 54-n=222-n | | 74-52=33-n | | 28x=250 | | 99-30=33-n | | c+5=2c-12 | | 4p+1=-3p-2 | | x+x+3/4x+3=300 | | y=2×17 | | 2/3=v/8 | | y=X×2 | | t/10=15/25 | | .p-11=5 | | b^2+9b-24=0 | | 86+u=99 |

Equations solver categories