2x-9/x+1=1

Simple and best practice solution for 2x-9/x+1=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-9/x+1=1 equation:



2x-9/x+1=1
We move all terms to the left:
2x-9/x+1-(1)=0
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
2x-9/x=0
We multiply all the terms by the denominator
2x*x-9=0
Wy multiply elements
2x^2-9=0
a = 2; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·2·(-9)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*2}=\frac{0-6\sqrt{2}}{4} =-\frac{6\sqrt{2}}{4} =-\frac{3\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*2}=\frac{0+6\sqrt{2}}{4} =\frac{6\sqrt{2}}{4} =\frac{3\sqrt{2}}{2} $

See similar equations:

| (3x-7)/4=28 | | (560/x)-(560/x-10)-1=0 | | 560/x-(560/x-10)-1=0 | | -3x-(8/9)=5/6 | | 560/x-560/x-10-1=0 | | (7t+1)=(4t+1) | | (7t+1)+(4t+1)=180 | | 3.62×10^3^16=x | | w-5=30 | | 200+2y+4y+4y=360 | | 8+7x=x+22 | | -8b+1=-b-6 | | 2a+1=-a+100 | | 7+10x3=37 | | -2x+7=3x-4 | | 47+2x=31-2x | | 3.x=2.20 | | (2)/(x)=(2x+5)/(2x-3) | | -5m-20=3m+4 | | (3x-1)²-5(x-2)-(2x+3)²=(5x+²)(x-1) | | -2k-4=-7k+21 | | 19+x=-6-4x | | 3a+27=27a+3 | | 5x+35-x²+1x=-3x+9x+2x-14-4 | | 30b-8=10b+52 | | 3r+16=7r+4 | | 5(x+7)-x(x+1)=-3x(x-3)+2(x²+7)-4 | | 5t=1 | | 2x(x-1)(x+4)=0 | | n−5/11=−1/3 | | -6-2y=-10 | | -24=-7p-5p |

Equations solver categories