2x/x-4+2x-5/x-3=81/3

Simple and best practice solution for 2x/x-4+2x-5/x-3=81/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x/x-4+2x-5/x-3=81/3 equation:



2x/x-4+2x-5/x-3=81/3
We move all terms to the left:
2x/x-4+2x-5/x-3-(81/3)=0
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
2x/x+2x-5/x-4-3-27=0
We add all the numbers together, and all the variables
2x+2x/x-5/x-34=0
We multiply all the terms by the denominator
2x*x+2x-34*x-5=0
We add all the numbers together, and all the variables
-32x+2x*x-5=0
Wy multiply elements
2x^2-32x-5=0
a = 2; b = -32; c = -5;
Δ = b2-4ac
Δ = -322-4·2·(-5)
Δ = 1064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1064}=\sqrt{4*266}=\sqrt{4}*\sqrt{266}=2\sqrt{266}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-2\sqrt{266}}{2*2}=\frac{32-2\sqrt{266}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+2\sqrt{266}}{2*2}=\frac{32+2\sqrt{266}}{4} $

See similar equations:

| 4x-1=-2(x+3) | | z+1.93=6.56 | | -5(1x+8)=-60 | | -(16+4x)=8 | | 18÷-2/3x4÷-7x-3÷1/4= | | 3120=40x | | v-4.8=9.35 | | 3=3x+x-1 | | 7x+11=17+7x | | -18=-3(x+1) | | 3x+2=148 | | 6(x+5)=-15 | | y+1/5=3/10 | | g−36=48 | | 14.4=-0.6x | | -n+4=16 | | 64^-2n=16^n | | 8x-14=360 | | 10f-5+3f=2-f | | 13=g3+ 10 | | −11−5x=30x+24 | | -9-3v=-4v | | g−52=31 | | 8n+7+5n-2=2n+8n+12 | | 220=10x+4 | | 3.2h+3=9 | | −10x+2=-8 | | -e+4e=8e-e | | 13+3x-2=5x-7 | | (x÷3)+5=18 | | v/7=5/3 | | 7q=567 |

Equations solver categories