If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+1+9x=0
a = 2; b = 9; c = +1;
Δ = b2-4ac
Δ = 92-4·2·1
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{73}}{2*2}=\frac{-9-\sqrt{73}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{73}}{2*2}=\frac{-9+\sqrt{73}}{4} $
| X+5x=46.2 | | 1.2029=1.12’n | | x^2+5x-1035=0 | | 1.2029=1.12^n | | X^3-x-1=69x^2 | | 4+4x+2x/3=172 | | 13x+3=83 | | 4x/15=36 | | 3y=45÷7 | | (X+2)(x^2+3x-4)=0 | | 2x(x+1)-(2x+1)(x-3)=6 | | (X+2)(y^2+3y-4)=0 | | 5(3x+1)=4(5x-2) | | 13p-5=25 | | 6x^2-2x+3x-1=0 | | 4x^2-1+x(2x-1)=0 | | 1676=x(64x^2-9x+36) | | 42=-5x | | 4x^2-1+x(2x+1)=0 | | 3x-12÷4=30-2x | | 2/5-x+3/x+7=1 | | v^2+10v-760=0 | | -x^2+15x-11=0 | | 3x/3-4/3+x/2-3/2=7/6 | | -2x+(4x-3)^2=0 | | 3x-4/3+x-3/2=7/6 | | (4x-3)^2=2x | | (w/8)-0.5=6 | | 1/y+2/y=15 | | x4+3x3-2x2-6x+4=0 | | 4x(x+3)(2x-1)=0 | | 19+4x=2x+7 |