2x2+10=1162

Simple and best practice solution for 2x2+10=1162 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x2+10=1162 equation:



2x^2+10=1162
We move all terms to the left:
2x^2+10-(1162)=0
We add all the numbers together, and all the variables
2x^2-1152=0
a = 2; b = 0; c = -1152;
Δ = b2-4ac
Δ = 02-4·2·(-1152)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9216}=96$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96}{2*2}=\frac{-96}{4} =-24 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96}{2*2}=\frac{96}{4} =24 $

See similar equations:

| 5y+6y-6=93 | | c=13^2+26 | | -6s+5=-37 | | 2x-(21+1)=-31 | | y-3y+2y=8.7 | | 2x-(2+x)=-31 | | x-10=2x+20+3x+10+110+4x | | 4x=2x+20+3x+10+110+x-10 | | 110=2x+20+3x+10+4x+x-10 | | |4x+7|=-3 | | 3x+10=2x+20+110+4x+x-10 | | 2x+20=3x+10+110+4x+x-10 | | 5(x+3)=2x+17 | | x=30-3/6-3 | | 6-2=3q | | (2x−3)(3x+2)=0 | | a=2(5)/5 | | 5s+4=49 | | X=8(2x+4-x+3)x+3 | | 16=18+x | | 1.6y+3y+9.5y=1.9 | | 2x+64+3=4245 | | 2x+64-3=4-245 | | 2x+64-3=x(4+1+11+11)+643+33 | | 2x+61=5x+61 | | 2.1-4.2x=0 | | -5a-4=21 | | |3v+5|=-7 | | (4x+2)2=32 | | (4x+2)X2=32 | | 6623=(d-92)+(d+795)+d | | 9+5n-4+5=4n-(-2) |

Equations solver categories