If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x+12=0
a = 2; b = 10; c = +12;
Δ = b2-4ac
Δ = 102-4·2·12
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2}{2*2}=\frac{-12}{4} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2}{2*2}=\frac{-8}{4} =-2 $
| 8/7=y/13 | | 21-16+x=14 | | 27=3x^-5 | | X+(x/2)=66.96 | | 360=32a-24 | | 93=5(1+3k)-2 | | 4t+4+2t-5t=5+2 | | -20+11f=19f+20 | | 3^(-x+9)=17^(4x) | | 4^2x-63*4^x-64=0 | | 5^(n)*2^(4n)=20 | | -11f-18=-9f | | (2/3)/x=5/4 | | -82=-2(1-5m | | 3^-x+9=17^4x | | 6+3y=−2+5y | | 18=10-4u+6u | | -7(6-4a)=154 | | 3+3y=−1+5y | | 48+6x=24 | | -6n=12-4n | | 414.48=37.68h+226.08 | | 5(3x-7)=7(2x+3) | | 0.7w+16+4w=24.98 | | -9s+10=-7s | | 3s+2s=5 | | 13=-2+8y | | x^-4=256 | | 7g-11g=20 | | 4(j+2)=20 | | 3z6;z=3 | | 6p^2-7p-5=0 |