If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x+4=0
a = 2; b = 10; c = +4;
Δ = b2-4ac
Δ = 102-4·2·4
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{17}}{2*2}=\frac{-10-2\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{17}}{2*2}=\frac{-10+2\sqrt{17}}{4} $
| 2.1q-7.7=1.1q+.832 | | 10x-8=5x=8 | | -2-t=64 | | -35+7x=0 | | -5(3y-10)+4y=28 | | (x-3)+25=0 | | 3(x-10)=60+x | | 6x-21=2x+10 | | 4(2y-2)+5y=31 | | 2/3x+8/3=3/2x-3/2 | | 2/3(x+4)=1/2(3x-3) | | -8x-16+24=-40 | | 4+b=27 | | h/7-6.5=1.2 | | 1/x=11/3x+10 | | 2(2.25x+8)=11 | | 1/3+z=5/4 | | 81/2+2x=381/2 | | 127x−79=23 | | 81/2+2x=36.5 | | -3=4/3x+5 | | d+0.5=0.70 | | Y-7+4y=134 | | 30+10x-10=11x+2 | | (4x+3)=189 | | (5x+30)+175=180 | | (3y-7+y+3)/2=y+6 | | -21+x=-12 | | 10r^-21=-4r+6 | | 7k-34k=12 | | 1/3=a/4 | | (22.4+x)/2=19.7 |