If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x+6=0
a = 2; b = 10; c = +6;
Δ = b2-4ac
Δ = 102-4·2·6
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{13}}{2*2}=\frac{-10-2\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{13}}{2*2}=\frac{-10+2\sqrt{13}}{4} $
| (19x-18)+(7x+1)=(10x-9) | | 8x+20=10x-66 | | 5r=-3r+-9-7 | | 20x-22=-4(1-6x) | | -10+4d=8d+10 | | 1/2x6+6=1/3x6 | | -10+4d=8d | | 6x2+9x=(2x+3) | | 2x+4/3x=40 | | r+6.5=-4.7 | | 15x-1=17x+3 | | (2x^2/5)+(5x/4)=10 | | -8-2w=10+4w | | 7·(-3+2x)=-6x-1 | | -4/5m=28 | | 2x+4x-8=-3 | | 6g+5=2+4g | | 6x-27=2x+145 | | -9k-4=1-4k | | 2(4v-9)-3v-11=-52 | | 14p+p-4=26 | | 131+4x+9=180 | | -1(6x+2)=20 | | 3m+10-4m+13=15 | | (4x-1)=(11x+1) | | 62=9z+8 | | 5.)1/3(12f-3)=4f-1 | | 3x=4+10 | | 4y+14+y=4 | | 21+32.7+x=180 | | -8-2+6u=8+8u | | 42/b+7=13 |