If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x+8=0
a = 2; b = 10; c = +8;
Δ = b2-4ac
Δ = 102-4·2·8
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6}{2*2}=\frac{-16}{4} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6}{2*2}=\frac{-4}{4} =-1 $
| 12-w=2w | | (8-x)/3=21 | | 6x2-42x+72=0 | | (4y+6)=36 | | (8)(2x+3)^3=0 | | 2x+35=88 | | f25=27 | | 14x-15=180 | | 3x+4(-3x-1)=-49 | | 8x+7+2x+6=5x+8 | | x2-x-50=0 | | 3x+4(-3x-1)=49 | | x²+5x+36=0 | | g-84=16 | | -2.5a=4.67=2.881 | | g-26=-99 | | 6x-3*(x+5)=3 | | 2x+9=2x^2+1 | | 2x+9=2x^2=1 | | 4|y+1|-32=0 | | 60=1/2(3x+6)(x+5) | | y/63+18=3294 | | 2/8=5/x-4 | | 5+3z=8 | | r-32=9 | | 10d+21=12d+19 | | 8x+12=10x-2; | | k-53=27 | | 4x=(3x-7)-19x^2 | | 6j+17=47 | | 27^-x+2=81 | | 5x+2(4x+4)=-18 |