If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-18=0
a = 2; b = 10; c = -18;
Δ = b2-4ac
Δ = 102-4·2·(-18)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{61}}{2*2}=\frac{-10-2\sqrt{61}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{61}}{2*2}=\frac{-10+2\sqrt{61}}{4} $
| 90+x+(2x/15)=180 | | 8x=55+85 | | 3/4y-2=12 | | 3u-9=-7u | | 7+14n=4-32n | | 5y-(3y+4)=16 | | 11-2b=15+2b | | 3/n=5.4/72 | | 0.10x+20=40 | | 13-2a=7 | | 7r-(2r+20)=20 | | 2+x-4=4x+12 | | -2r-1=-3r | | 1(t)=-16t^2+8t+24 | | 4(x-1)-2(3+5)=-3x+1 | | -(5x-3)=2-10(x+2) | | 5n2-32n-35=0 | | x=3+31/240 | | -5(2x-7)24=89 | | x+x+3=-5(x+x+1)-114 | | 2/3a-6=1/3a-9 | | 15.7·3.09+15.7·2.91=xx= | | 5x+62=3x+84 | | .25+6x(4-2x)=-95.75 | | 5x=24.50 | | -4(2x+4)=-16x+5 | | 500-2x=220 | | 5+17x=1495 | | y/2=(2y-18) | | 15=5x~13 | | 3/x=20/100 | | (8x^2-12)=(7x^2-4x) |