If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-19=0
a = 2; b = 10; c = -19;
Δ = b2-4ac
Δ = 102-4·2·(-19)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{7}}{2*2}=\frac{-10-6\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{7}}{2*2}=\frac{-10+6\sqrt{7}}{4} $
| 5/6r+5=12 | | 12m-18=90 | | 1589=x/100 | | 9v+15=51 | | -5y+11=6y | | 11m-15=8m+5 | | -5x+8=−5x+8=−4x+9 | | -5x+8=−5x+8=-4x+9 | | 2y+4=16.2 | | a+(a+1)+(a+2)=39 | | 15l+15=75 | | 8z=11,2 | | (4.6x-7.9)/0.4=3.4 | | 17y-46=6 | | 16+1/2n=60 | | 16n+1/2=60 | | -2(5-x)=6 | | x*1.5*500=500x+1500 | | (8x+12)°(5x-14)°=180 | | 6.3(n-4.3)=5.8 | | 3x+296=3496 | | 500x+1500=x | | 3000=x+.2(x) | | Y=20x=54 | | 5x-4=-2×+24 | | 22x+33=143 | | 350=12x+950 | | -50x+35x-18=-25x+9x-12 | | X2+12x11=0 | | -50x+35x-18=-25+9x-12 | | (t+8.7)/1.2=2.5 | | x+35=20/2 |