If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-56=0
a = 2; b = 10; c = -56;
Δ = b2-4ac
Δ = 102-4·2·(-56)
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{137}}{2*2}=\frac{-10-2\sqrt{137}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{137}}{2*2}=\frac{-10+2\sqrt{137}}{4} $
| 6^(x-2)=17 | | 4x-9+2x=3x+5+3x | | 8a=17 | | 3/4z=-5/12 | | -2u+14u+3=8u+7 | | (y)2+11=0 | | 1/2x+3/5x-4=20-1/3x | | 2Q-5p=-19 | | -2u+14u+3=8u+37 | | 92+x/2=85 | | -3.1+2.1=0.7y-5.5 | | 4x^2+7x+12.25=320+12.25 | | x—8.1=5 | | -2u+14+3=8u+37 | | 85+x/2=92 | | 3.2=⅘(b-5) | | 3(3+y)+1=31 | | x/8.1=5 | | X^2+X^2+20x+100x=2500 | | 85+4x=92 | | 480=8t+16t^2 | | 1/2x+3/5x-4=201/3x | | 10^3y=5 | | .75(12x+12)=9x+5 | | -25b-74=b-126 | | 4(92)+x=85 | | a+4/2=a-2/4 | | 10+5x2= | | 263=-x+23 | | a-91=4a-28 | | 5+z+z=13 | | 6^x=1296 |