If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+11x+15=0
a = 2; b = 11; c = +15;
Δ = b2-4ac
Δ = 112-4·2·15
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*2}=\frac{-12}{4} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*2}=\frac{-10}{4} =-2+1/2 $
| 4x-1/2=x+1 | | 3(x-2)+4=43 | | 3x−5=4x−6 | | (3k+3)=5(4k-4) | | 11c-3=10c-9 | | 7b-12=b+18 | | 2x+6-8x=8(6x+2) | | 27a+6=28a+4 | | v+5/4=5/4 | | 2x-1/3-3x+1/4=5/6 | | 5x-8-3x=-30 | | 8c+2=2c+14 | | 12b+3=2b+33 | | 10c-3=9c-5 | | 6b-8=2b+4 | | 29a+8=30a+5 | | 9(x+10)=-11 | | 11c+10=6c+50 | | 4(7-x)^2-3=61 | | H=2+6t-2t^2 | | 7b+2=3b+30 | | H=-4.9t^2+58.8t | | 9x+5=7×+33 | | 12c-4=11c-7 | | y(y+4)=32 | | 5b-15=3b+3 | | 31a+9=32a+2 | | (2x*3)=16 | | 10c+3=6c+15 | | 6a+1=3a+10 | | 3(x-1=-30 | | 3^(2x)=120 |