If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x+10=0
a = 2; b = 12; c = +10;
Δ = b2-4ac
Δ = 122-4·2·10
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8}{2*2}=\frac{-4}{4} =-1 $
| -46=-5+x | | p^2-30p=0 | | 2(3x-1)-2(6-2x)=4 | | -22=-2(4x-5) | | 2u+12=80 | | -6(n+2)+15=-2n-13 | | 0-4x=12 | | 8x=5x+10 | | f(1)=2f(1-1) | | 15=-5(2x-7) | | (X-3)x=40 | | 4t−2+t2=6+t2 | | 12x-2x+15=3-6+x | | D^-1(t)=10.4-4t | | 3x-1=4(x+6) | | (D^3-3D^3+4)y=0 | | 7/6=x-8/18 | | D(t)=10.4-4t | | -11y−-16y=-20 | | 3/4y-4=11 | | 10=(x)($25) | | 12x-16=10x-8 | | 5x^2-25=90 | | 8q^2-4q=7q^2-7q+54 | | 20k+-5k=-15 | | 24=a*a+1*a+2 | | 6-4+3x=2-5x | | 8q^2-4q=7q^2+7q+54 | | 7x+23=2x+3 | | 12-9(x+6)+5x=-17 | | 24=x*(x+1)*(x+2) | | -4/5x+89=-15 |