If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x+17=0
a = 2; b = 12; c = +17;
Δ = b2-4ac
Δ = 122-4·2·17
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{2}}{2*2}=\frac{-12-2\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{2}}{2*2}=\frac{-12+2\sqrt{2}}{4} $
| 0.5y-10=20 | | 3n=-7n+n | | X/3+y/6=1 | | 11x-1=-21 | | 36-2y=26 | | 4p+5=6p−1 | | X²-4x-16=0 | | 5x+7=3x+14 | | –9+10c=9c | | u/3-13=-2 | | 36-3y=10 | | -6+4x=8x+1+1 | | m=4/5,m=8/10 | | -5(6-p)-5(1+4p)=-95 | | m=2,m=3 | | x^2+1.5x-3=0 | | m=10,m=-1 | | m=-4,m=-1/4 | | -5(10+7x)-(9-2×)=-26 | | m=3,m=-3 | | −2x=94 | | m=2,m=-1/2 | | 5x+5=2+ | | -5(10+7x)-(9-2x)=-26 | | y=y^2-y-2 | | A=11b=-8 | | 2s-3=-2s-15 | | 3x+5=x-13# | | X2+110x+216=0 | | 3q-2=-2q-17 | | (2x-3/2x+4)=(x/x-2)-(1/x) | | 16z+7=8z+47 |