If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x+3=0
a = 2; b = 12; c = +3;
Δ = b2-4ac
Δ = 122-4·2·3
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{30}}{2*2}=\frac{-12-2\sqrt{30}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{30}}{2*2}=\frac{-12+2\sqrt{30}}{4} $
| -21r+24=-18 | | (-4x+(8)=42) | | x–0.2=x | | 4x+12x+3=0 | | 7+2y=(2y-2-7y | | 44xx=8 | | f(2)=3(4)+1 | | -5(1/6x-8)=40-x+1/6 | | G(-3)=5x-4 | | 7a–3a+12a–14=a | | 80x-240=2240 | | 31x+248=930 | | (2+1.3q)(4.3)= | | 3/4m-1/4m+3=2/4m+5 | | t2=256 | | 40x+5=420 | | 225=g2 | | 0=x^2-144 | | 289=w2 | | G(2)=5x-4 | | 900+x^2=5625 | | 61x+61=732 | | q2=400 | | 144=h2 | | j+5=16 | | 64=z2 | | 0=–8y+8y | | 9=u2 | | x/9=12/54 | | 0.07(x+2,000)=3,500 | | 121=m2 | | 4(x-0.6)=4 |