If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x=144
We move all terms to the left:
2x^2+12x-(144)=0
a = 2; b = 12; c = -144;
Δ = b2-4ac
Δ = 122-4·2·(-144)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-36}{2*2}=\frac{-48}{4} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+36}{2*2}=\frac{24}{4} =6 $
| X+2x=5x-2 | | 20+2.50x=35 | | 12.5x-4+37.5x-4=5 | | –13x+15x+–4x=8 | | 2x+3(3x-3)=46 | | 51/p=17/7 | | -4x-7(÷3x-6)=195 | | 5r-7r=18 | | 4(s+3)+4=2(s-2)+16 | | 52=36-9b | | 10x-20+5-216=15x-4-1 | | 5n+6(-7n)=0 | | 2p+6=-8 | | 5p=p5 | | -0.2(12n+28)=25 | | 5n+6(-7n)=3 | | 2/46=5/x | | 6=-2(p-1) | | 3x=-18+2x-45 | | 16p=36 | | -5s-8=27 | | 16y=-4(-4y) | | 7d-3d+10=9+21 | | u+26=31 | | 4=92/v | | 3(x-5)=5(2x+3)+26 | | 63=3u+16 | | n−3=27 | | 9x+6=-3x+15 | | (-x+5)(-x+5)=0 | | 8²+x^2=17² | | 6=6(z-10) |