If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+1345x-145=0
a = 2; b = 1345; c = -145;
Δ = b2-4ac
Δ = 13452-4·2·(-145)
Δ = 1810185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1345)-\sqrt{1810185}}{2*2}=\frac{-1345-\sqrt{1810185}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1345)+\sqrt{1810185}}{2*2}=\frac{-1345+\sqrt{1810185}}{4} $
| X^2-x+3/16=0 | | -1=-2x-5 | | 300+x=400 | | 200x+3200=5200 | | 5x=294 | | 60=20-2x | | 6(3x-1)=18x+6 | | 4(1)+x-7=0 | | 100+50+x=300 | | -4x-5=70 | | 4y+1-7=0 | | -6x+9=x+4-10x-13 | | 2.1(5w-15)=0 | | -7x+3=-40 | | -15-4x^2=-60 | | 40x+80=20x | | 89=3p-4(5p-5) | | 5y-2/4=1 | | p^2+20p+100=0 | | 0.5x-6=-6+0.5x | | -65=-5(1-3x)-5x | | 40x+80=20 | | 2r-1=13 | | 4x=8=56 | | -5x+3+7x=3 | | 5+v=14 | | 4w^2-18w=0 | | 2d+-2d+18-4d=60 | | x+3x+10=14+3x | | 2/3t=2.5 | | 2x^2=55x+5 | | -7x+3=12 |