If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+13=63
We move all terms to the left:
2x^2+13-(63)=0
We add all the numbers together, and all the variables
2x^2-50=0
a = 2; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·2·(-50)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*2}=\frac{20}{4} =5 $
| -26-11x+15(20x-4)=0 | | 9x+7=-7x+7 | | 30-7(m+5)+16m=0 | | 6561^(x-4)=27^4x | | -2.5p=5(10-0.5) | | -3+6x=-18 | | Y+3=-(x-1) | | 7r+5+8r+9=180 | | 6r=0 | | -11=q-11 | | 7z/3-2=3z+9 | | 3*(x+1)=2*(x+6)¨ | | 80+(25x24)=x | | -10=d+9 | | -3(10-2p)+11p-13=0 | | -3x=-10x-1 | | 6(3x-6)=108 | | 10x=-4x+4 | | 8y+2–3y=27 | | 2/x+7=-3 | | X=n/4+37 | | 3x=x2+1 | | 9x÷2=45 | | 751+21(n-12)=649+31(n-10) | | -5(-9x-2)+3x=1 | | 8-5(6x+3)=-3 | | T(n)=n^2+3n | | 27+6j-16-18j+20=0 | | 2x^+13=63 | | {-4-2x}+8=20 | | 7-2(-8x-7)=6 | | (-4-2x)+8=20 |