If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+13x-7=0
a = 2; b = 13; c = -7;
Δ = b2-4ac
Δ = 132-4·2·(-7)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-15}{2*2}=\frac{-28}{4} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+15}{2*2}=\frac{2}{4} =1/2 $
| /5x45=36 | | x+2x+4x+6=102 | | 2/3x=16/27 | | 10x(-8x+7)=-170 | | 1-1/4=5x+15/4x | | 2x2=13x-7 | | -9x+10+11x+15=-4 | | -x2+7x-5=0 | | X^4-5x^2+48x-36=0 | | x-4/21=6/7=x-7/14 | | 90+4x+5x-27=180 | | 2x-0,3=1 | | 56-x+3x=41 | | -2v-47=5(v-8) | | x^2+1+3x+3+2=0 | | x²+1+3x+3+2=0 | | -15x-26=-11+54 | | 5x+13Y=68 | | 9-3(8x+8)=7 | | 1(9x+3)/3=3x+1 | | -3(w+8)=-5w-38 | | 2(4x+5)-6=36 | | t-13=7;{10,13,17,20} | | 22x+3=8 | | a/6-6=16 | | 12y2+7y-1=0 | | 6x^2+3^x=1296 | | 2d=-9+3d | | -2w-16=3(w+8) | | 8p^2+26p+15=12 | | x^2-3x+2.25=-2.25 | | 53x-1+21x+1+32=180 |